
Topological Sort

See pages 647 to 650 of the text.



Theorem: In a directed graph, there must either be a cycle or a 
a node with no incoming edges.
Proof:  Start with any node in the graph; call it x1. If this node 
has no incoming edges we are done.  If it does have an 
incoming edge, call the source of this edge x2.  So we have

x2 -> x1

Now consider x2.  If it has no incoming edges we are done.  If it 
does have an incoming edge, call the source of this edge x3.  So 
now we have

x3 -> x2 -> x1

Continuing in this way we either find a node with no incoming 
edge or a path of length n:

xn+1 -> xn -> xn-1 -> .... -> x2 -> x1

There are n+1 nodes on this path.  If n is the number of nodes 
in the entire graph, some node must appear more than once 
on this path, and that gives a cycle.



Moral: In any DAG there is a node with no 
incoming edges.



A topological sort of a graph is an ordering of 
the nodes of the graph that is consistent with 
the edges of the graph: if there is an edge from 
node x to node y then x comes before y in the 
ordering.  This is a commonly used technique 
for scheduling problems, where there are 
constraints among the items to be scheduled.  
It is also used to update cells in spreadsheets, 
where a change to any one cell could lead to 
the modification of many other cells in the 
sheet.



It should be clear that if a graph contains a cycle 
then it has no topological sort, for there is no 
ordering of the cycle nodes that is consistent 
with the edges of the graph.  
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However, for an acyclic directed graph there is 
an easy algorithm for finding a topological sort:



Topological Sort Algorithm:  Maintain a WorkingSet of 
graph nodes.  Initialize the WorkingSet to contain any 
node of the graph that has no incoming edges.

Repeat the following steps until the WorkingSet is empty.
a) Remove any one node from the WorkingSet.  Call 

this node X.  
b) Remove every edge from node X to any other node 

Y.
c) If node Y has no other incoming edges, add node Y 

to the WorkingSet.
Continue these steps until the WorkingSet is empty.  



How do we know this works?  Note that a node cannot be 
added to the WorkingSet until all of is incoming edges 
have been removed, and that does not happen until every 
node that has an edge to it is added to the output.  So the 
ordering is correct.  Also, note that if the graph starts out 
without a cycle, the steps of this algorithm can't create a 
cycle.  So the nodes and edges that remain form an acyclic 
graph. According to our theorem, this graph must have a 
node with no incoming edges, which is removed from the 
graph and added to the working set.  So this algorithm 
doesn't terminate until all nodes from the graph have 
been added to the WorkingSet and then added to the 
output.  The algorithm thus outputs all nodes of the graph 
in a correct order.



How long does this take?  If we use a queue to 
represent the WorkingSet, we can get 
constant-time inserts and removals.  The 
algorithm visits each node in the graph and 
removes each edge, so it runs in time 
proportional to the number of edges: O(|E|).



Clicker Q: Do you see a  way to use this to 
determine if a directed graph has a cycle?

A. Yes
B. No


